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Abstract. Sea ice is a crucial component for short-, medium- and long term numerical weather predictions. Most importantly

changes of sea ice coverage and areas covered by thin sea ice have a large impact on heat fluxes between the ocean and the

atmosphere. L-Band brightness temperatures from ESA’s first Earth Explorer SMOS (Soil Moisture and Ocean Salinity) have

been proven to be a valuable tool to estimate mean thin sea ice thicknesses. Potentially, these measurements can be assimilated

in forecasting systems to constrain the ice analysis leading to more accurate initial conditions and subsequently more accurate5

forecasts. As a first step, we use two different radiative transfer models as forward operators to generate top of atmosphere

brightness temperatures based on ORAP5 model output for the 2012/2013 winter season. The simulations are then compared

against actual SMOS measurements. The results indicate that both models are able to capture the general variability of measured

brightness temperatures over sea ice. We identify one model to be favorable for brightness temperature assimilation purposes

in the ORAP5 setup. The simulated brightness temperatures are dominated by sea ice coverage and thickness changes most10

pronounced in the marginal ice zone where new sea ice is formed. There we observe largest differences of more than 20 Kelvin

over sea ice between simulated and observed brightness temperatures. We conclude that the assimilation of SMOS brightness

temperatures yield high potential for forecasting models to correct for uncertainties in sea ice thicknesses of less than 0.5 meter

and caution that uncertainties in sea ice fractional coverage may induce large errors.

1 Introduction15

For the first time, the European Space Agency second Earth Explorer mission SMOS (Soil Moisture and Ocean Salinity) deliv-

ers brightness temperature measurements at 1.4 GHz on a global scale (Mecklenburg et al., 2012). SMOS L-Band brightness

temperatures have been used to produce operational products of soil moisture over land (e.g. Albergel et al., 2011; Kerr et al.,

2012) and ocean salinity over water areas (e.g. Reul et al., 2014) since 2010. Additionally, SMOS passive microwave imagery

has been used to estimate sea ice parameters, such as sea ice thicknesses (e.g. Kaleschke et al. (2012), Tian-Kunze et al. (2014)),20

sea ice concentrations and snow coverage (Maaß et al., 2015). Microwave radiation is especially useful to derive thin sea ice

thicknesses as it is able to penetrate snow and sea ice for more than half a meter and closes the gap to thicker sea ice thickness

retrievals of more than 1 meter by using altimetry (Kwok and Cunningham, 2008; Kaleschke et al., 2010; Ricker et al., 2014;
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Tilling et al., 2016). This feature appears to be especially important since the Arctic Ocean is said to shift to a new state, in

which older, thicker sea ice gets more and more replaced by younger and thinner ice (Laxon et al., 2013; Meier, 2015).

Much effort has been made to validate L-Band based sea ice thickness retrievals. In preparation for SMOS, Kaleschke

et al. (2010) showed a significant agreement between sea ice thicknesses derived from L-band brightness temperatures and

helicopter based electromagnetic induced (EM) sea ice measurements in the Bothnian Bay. After the launch of SMOS in5

2009, the sea ice thickness retrieval has then been successfully validated with MODIS thermal infrared imagery data in the

Kara and Lepedev sea (Kaleschke et al., 2012) and provided the first Arctic-wide map of thin sea ice thickness. The retrieval

algorithm is based on the radiative transfer model of Menashi et al. (1993) and has been extended by a sea ice roughness

approximation (Kaleschke et al., 2010), a thermodynamic sea ice model to consider variations of ice temperatures and ice

salinities, as well as a sea ice thickness distribution (Tian-Kunze et al., 2014). Retrieved ice thicknesses prove to correlate10

with ship- and airborne observational thicknesses up to 1.5 m (Kaleschke et al., 2016). However, as previous algorithms lack

a comprehensive representation of the complex structures of sea ice, such as electromagnetic properties from multiple sea ice

layers and a snow layer on top, a second radiative transfer model was utilized, namely the model used in Maaß et al. (2013) a

modified version of the multi-layer model from Burke et al. (1979). The model has been used to derive snow thicknesses over

thick multi-year sea ice (Maaß et al., 2013) but has not yet been applied to derive sea ice thicknesses on an Arctic-wide scale.15

A valuable application for sea ice observations is the assimilation into forecasting models. The assimilation of fractional sea

ice coverage derived by remote-sensing techniques has been proven to be very beneficial and is conducted in varies studies (e.g.

Stark et al. (2008); Lindsay and Schweiger (2015)). The sea ice age derived from sea ice drift measurements from the National

Snow and Ice Data Center (NSDIC) has been used as a proxy for sea ice thicknesses in the Arctic Sea Ice Volume reanalysis

Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) (Zhang and Rothrock, 2003). Those sea ice thicknesses20

were compared with observations from e.g. airplanes, buoys and submarines, but not on a larger scale. However, the direct

assimilation of Arctic-wide remote-sensing based sea ice thicknesses has not yet been performed on a regular basis. As a first

attempt, SMOS sea ice thicknesses of less than 0.4 m have been assimilated in the TOPAZ Arctic Ocean reanalysis with the

result of reduced Root Mean Square Deviations (RMSD) between SMOS-Ice and TOPAZ reanalysis sea ice thicknesses in

March and November (Xie et al., 2016). It has been found that the inconsistency between sea ice concentrations in SMOS25

and the model is one of the major limitations for a sea ice thickness assimilation. Furthermore, SMOS sea ice thicknesses

have been assimilated into the Massachusetts Institute of Technology general circulation model (MITgcm) with a localized

Singular Evolutive Interpolated Kalman (LSEIK) filter (Yang et al. 2014). They show that the assimilation leads to improved

ice thickness forecasts, as well as better sea ice concentration forecasts.

To improve the accuracy of the sea ice thickness assimilation it is possible to consider other sea ice parameters, such as the sea30

ice fractional coverage or ice/snow surface temperatures. A common approach to do that is to assimilate brightness temperatures

rather than a ready-to-use high-level satellite product. The advantage is the availability of a wide range of consistent input

data, whereas independent sea ice thickness retrievals rely on assumptions, parameterizations and auxiliary data, such as

climatologies or secondary reanalysis products. However, the question remains which radiative transfer model suits best to

be used as a forward operator in a brightness temperature assimilation scheme for thin sea ice thicknesses. So far, simulated35
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brightness temperatures have been validated for idealized typical Arctic conditions (e.g. Maaß et al. (2013), Tian-Kunze et al.

(2014)), but have never been compared to L-Band remote sensing observations on a large scale.

In this study, we investigate the Arctic-wide performance of the radiative transfer models of Kaleschke et al. (2010) and Maaß

et al. (2013) to account for diverse atmospheric and oceanic conditions and to identify the most important input parameters for

a sea ice thickness application. In preparation for a brightness temperature assimilation, we concentrate on the input data of the5

global ocean reanalysis product ORAP5 (Ocean ReAnalysis Pilot 5) produced by the ECMWF. We evaluate which radiative

transfer model to use for assimilating sea ice thickness into the ORAP5 reanalyses by comparing simulated and observed

brightness temperatures from the radiative transfer models with ORAP5 input data and SMOS observations, respectively.

2 Data and Methods

Both radiative transfer models provide brightness temperatures as a function of temperature, snow- and sea ice thickness,10

incidence angle and the permittivity (Fig. 1). The latter is calculated with the snow, sea ice and sea water temperatures (as

well as the snow/sea ice interface temperature), the bulk sea ice and water salinities and the snow and sea ice thicknesses.

The sea ice salinity is estimated with the empirical approach of Ryvlin (1974) making the ice salinity a function of the sea

surface salinity, the sea ice thickness, the salinity ration of the bulk ice salinity at the end of the sea ice growing season and the

growth rate coefficient. The latter two are taken from Kovacs (1996) who derived a value of 0.175 for the ice salinity ration15

from observational data in the Arctic and 0.5 for the growth rate coefficient, as also suggested by Ryvlin (1974). To obtain the

ice/snow interface we calculate the thermal conductivity of ice with the snow surface temperature and ice salinity (Untersteiner,

1964). Using this, we are able to determine the bulk sea ice temperature for our sea ice slab by assuming the heat fluxes are

in equilibrium (Maykut and Untersteiner, 1971). We calculate the brine salinity with a polynomial approximation that uses

bulk sea ice temperature (Vant et al., 1978; Leppäranta and Manninen, 1988) and the pure ice density as a function of bulk ice20

temperature (Pounder, 1965). As the polynomial coefficients for the brine salinity calculation are only provided for 1 and 2

GHz, we linearly interpolate between these two frequencies to determine the coefficients for 1.4 GHz. By taking the ice and

brine density, as well as the bulk ice temperature, we are able to calculate brine volume fraction using equations valid for ice

temperatures below -2◦C from Cox and Weeks (1983) and above -2◦C from Leppäranta and Manninen (1988). Finally, the

permittivity of sea ice is derived by an empirical relationship to the brine volume fraction (Vant et al., 1978) (for a summary of25

references see table 1).

In order to represent sea ice brightness temperature measurements in partially covered data points over the open ocean, the

models linearly include sea ice fractional coverage in the calculations for each grid cell. Additionally, both models consider

the subpixel-scale heterogeneity of sea ice thicknesses with a statistical ice thickness distribution. We calculate the brightness

temperatures for ten linearly divided sea ice thickness bins with a maximum of 2 meter thickness. Then, we translate the mean30

sea ice thickness from the input data to a sea ice thickness distribution derived by observational data (As used in Algorithm II*

by Tian-Kunze et al. (2014)). The final brightness temperature is the average of the ten respective bins weighted by the sea ice

thickness distribution.
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Figure 1. Simplified schematic illustration for the determination of auxiliary parameters provided to the radiative transfer models utilized in

this study. The studies for the methods are listed in Table 1. A listing of all input data and the most important parameters is given in Table 2.

Boxes with white background indicate input data from OPAP5 reanalyses.

Table 1. Applied methods to obtain auxiliary parameters for brightness temperatures calculations above sea ice and snow. The numbers in

the first row refer to the numbers in Fig.1.

No. Parameter References

1 Bulk ice salinity Ryvlin (1974)

2 Ice thermal conductivity Untersteiner (1964)

3 Snow/Ice interface and bulk temperatures Maykut and Untersteiner (1971)

4 Brine salinity Vant et al. (1978); Leppäranta and Manninen (1988)

5 Brine volume fraction Cox and Weeks (1983)

6 Snow permittivity Tiuri (1984)

7 Sea ice permittivity Vant et al. (1978)

8 Brightness temperatures Kaleschke et al. (2010), Maaß et al. (2013)
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Sea water emissivity calculations are based on Fresnel equations with the descriptions of sea water after Ulaby et al. (1981)

with permittivities obtained by Klein and Swift (1977). Wind induced sea surface roughness influences are assumed to be small

and will be neglected (Dinnat et al., 2003). To account for corrections of the galactic background radiation and atmospheric

deviations a simplified atmospheric model (Peng et al., 2013) is taken forced by climatological data from 65 years of NCEP

data (Kalnay and Kanamitsu, 1996). The cosmic contribution to the overall brightness temperatures is set to 2.7 Kelvin. In5

these simulations, we restrict the brightness temperature calculation to nadir incidence angle. The freezing temperature of sea

water is set to -1.8◦C.

The single-layer model

Individual modifications of the coherent radiative transfer model of Kaleschke et al. (2010) as used in Tian-Kunze et al.

(2014) include the assumption of a dielectric slab of sea ice with a semi- infinite layer of air on top and a semi-infinite10

layer of ocean water below (the model is further referred to as KA2010). The model considers a single layer of bare sea

ice. To obtain an incoherent solution, Kaleschke et al. (2010) extends the model with a sea ice roughness approximation.

As long as the root mean square thickness variations of the illuminated footprint are much larger than the electromagnetic

wavelength used in the model, it is possible to average the emissivity over a variety of sea ice thicknesses which assumes all

coherent propagation effects are averaged out. The model does not add a separate snow layer on top of the sea ice (thermal15

conductivity set to climatological value of ksnow = 0.31 (Yu and Rothrock, 1996)). In that setup, snow influences the brightness

temperatures by a temperature insulation of sea ice from the atmosphere. As snow covers the ice it dampens the influence of

atmospheric temperature changes to the ice. The effect appears to be significant and can be considered within the sea ice/snow

interface temperature. An additional thermodynamic model as used in Tian-Kunze et al. (2014) becomes redundant since we

use auxiliary data for surface temperatures.20

The multi-layer model

The incoherent model used in Maaß et al. (2013) is based on radiative transfer equations and describes the emitted radiation

from a stratified bare soil (referred as MA2013). The core equations are taken from Burke et al. (1979), but it has been

substantially modified to suit the needs for sea ice. In our simulations the MA2013 model consists of three layers of sea ice and

one layer of snow on top of the ice. All ice layers have the same properties except for the sea ice thickness that is simply divided25

by the number of layers considered and the ice temperature that linearly changes between the lowest layer bordering the ocean

and the upper layer facing the atmosphere. The snow is assumed to be dry and has a snow density of ρsnow = 330 [kg/m3].

In contrast to the previous model, the snow layer does not only affect the temperature of the underlying sea ice, but also the

radiation incidence angle, potentially leading to propagation effects. Snow changes the refraction index and thus the reflectivity

between the air-snow and snow-ice boundaries. By changing the optical properties of the air-ice boundary and the temperature30

of sea ice, snow has a passive effect on the brightness temperature (Schwank Mike et al., 2015).

As an addition to the model described in Maaß et al. (2013) we added the ability to take multiple reflections and refractions

within the sea ice into account. Thus, the radiative beams are followed on their way through the layers of snow and ice and
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Table 2. Input parameters provided for the calculation scheme. The letters refer to Fig. 1.

Letter Input parameter Value References / Source

A Snow density 330 [kgm-3]

B Thermal conductivity of snow 0.31 [Wm-1K-1] Yu and Rothrock (1996)

C Ice salinity ratio 0.175 Kovacs (1996)

D Growth rate coefficient 0.5 Ryvlin (1974)

E Sea ice thickness variable ORAP5

F Snow thickness variable ORAP5

G Sea surface salinity variable ORAP5

H Snow/ice surface temperature variable ORAP5

I Sea surface temperature variable ORAP5

H Sea ice concentration variable ORAP5

added up when they leave the medium in upper direction towards the atmosphere. Reflected beams are removed after 15

interface passings when they are not able to leave the ice-snow medium on the short term. At this point, the intensity of the

radiative beams are negligible and we are able to cap the computational effort for the calculation.

2.1 The ORAP5 reanalyses

The radiative transfer models are forced using data from the Ocean ReAnalysis Pilot 5 (ORAP5) project, which is provided by5

the European Centre of Medium range Weather Forecast (ECMWF) (Tietsche et al., 2014). The sea ice and snow thicknesses,

the surface and sea water temperatures, the sea ice fractional coverage and the sea surface salinity are taken from ORAP5 data

(Table 2). The NEMO global ocean model version 3.4 has been utilized to run on the DRAKKER ORCA025.L75 configuration

for 34 years, covering the years from 1979 to 2013. The configuration uses a tripolar mesh grid with poles located in Greenland

and Central Asia in the northern hemisphere, as well as a pole in the Antarctic in the southern hemisphere. The spatial resolution10

ranges from 1/4 degree at the equator to a couple of kilometers in the polar regions with 75 vertical levels in the ocean.

The dynamic-thermodynamic Louvain-la-Neuve Sea Ice Model second generation (LIM2) has been coupled to the NEMO

ocean model (Bouillon et al., 2009). Sea ice is represented with a two-dimensional viscous-plastic rheology that interacts with

the atmosphere and the ocean. A simple three-layer model (one for snow and two layers for ice) is used at which sensible heat

storage and vertical heat conduction are determined. Vertical heat fluxes are calculated based on the thermodynamic energy15

balance according to Semtner (1976). The albedo is a function of the snow and ice thicknesses, the state of the surface and the

cloudiness. Sea ice coverage is taken from the Operational SST and Sea Ice Analysis (OSTIA) system, which assimilates sea

ice concentration from the Satellite Application Facility on Ocean and Sea Ice (OSI-SAF) dataset produced by the European

Organization for the Exploitation of Meteorological Satellites (EUMETSAT).

This study focuses on the winter season in 2012/2013, more precisely on November in 2012 and March 2013. The period20

has been chosen due the availability of the reanalyses dataset ORAP5 and SMOS measurements (v. 5.05). As a pilot-project
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with the goal to deliver ocean reanalyses with highest quality standards the dataset is not yet operational and therefore further

processed. The second limiting factor is a reasonable time-frame to describe brightness temperature changes with varying sea

ice thicknesses. In the melting season, when melt ponds form on sea ice and temperatures begin to rise, SMOS brightness

temperatures over sea ice are impossible to connect to a specific sea ice property (Kaleschke et al., 2010). Thus, November and

March are the first and the last month, respectively, with full monthly data coverage from SMOS and therefore chosen.5

2.2 SMOS brightness temperatures

SMOS is equipped with a passive microwave 2D-interferometer called MIRAS (Microwave Imaging Radiometer with Aper-

ture Synthesis) operating in L-Band at 1.4 GHz (~21 cm). It measures brightness temperatures in full-polarization up to 65◦

incidence angle every 1.2 seconds (Kerr et al., 2001). The hexagonal snapshots have a swath-width of around 1200 km, which

allows a global coverage. Each point on earth is observed at least once every three days with a daily coverage in the polar10

regions due to SMOS quasi-circular sun-synchronous orbit at 758 km height.

SMOS snapshots are influenced by Radio frequency interference (RFI) rooting from radar, TV and radio transmission (Meck-

lenburg et al., 2012). To account for the most critical disturbances, a RFI filter has been utilized. Brightness temperatures above

300 K identify a snapshot to be RFI-contaminated and be further ignored for the brightness temperature product. The threshold

of 300 K is chosen as values higher than that are not expected to be seen in the Arctic or Antarctic.15

The brightness temperature product consists of vertical and horizontal polarization, which are averaged up to 40◦ incidence

angle when they are taken within 2.5 seconds time-interval (Kaleschke et al., 2012). These brightness temperatures are said to

represent L-Band measurements at nadir as brightness temperature changes that are connected to the varying incidence angles

are expected to cancel out each other when both polarisations are considered. The averaged product is available on a daily

basis up to 85◦ latitude. The data is collected for an entire day and is averaged for each grid point to provide a L3B daily mean20

brightness temperature product. Finally, the data is geolocated on a NSIDC polar-stereographic projection that provides grid

cells with the same areal extent of 12.5 km horizontal resolution.

3 Sea water correction

To investigate the quality of the radiative transfer models for partially covered sea ice areas in the ORAP5 setup, we first check

the representation of emissivities over open ocean of the models. As mentioned before, both models use the same equations to25

calculate the emissivity of water areas based on Klein and Swift (1977) and will thus produce the same brightness temperatures

using same input data. Therefore we here only show the correction for MA2013. In any case, L-Band brightness temperature

variations in open Arctic waters are low compared to sea ice and should fairly match between observed SMOS and simulated

brightness temperatures from the radiative transfer models (Berger et al., 2002).

We simulate brightness temperatures in all open water areas north of 50◦ latitude. As a first step, we project the ORAP530

reanalyses on the polar-stereographic grid SMOS is using. Afterwards, we obtain a monthly average by calculating brightness

temperatures for each day of the month using daily input data. Then, we average all brightness temperatures corresponding to
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a single day to a monthly value. We find an average bias of 3.093 Kelvin between MA2013 and the SMOS observations in

November and March (Fig. 2). To identify the open water areas, we exclude all data points with potential sea ice on it and also

exclude all data points flagged as land. Furthermore, brightness temperatures of more than 120 Kelvins are most unlikely to

account for Arctic open water areas and are excluded as well. Finally, a total of 99085 data points show an average open water

brightness temperature of SMOS TBSMOS = 100.68K, whereas the models have an average of TBmodel = 97.58K.5

To correct for the bias of open water areas we add the difference of 3.093 Kelvin to the overall brightness temperature

of sea water. Subsequent results of the radiative transfer models show the main accumulation of data points at around 100

Kelvins and a second, weaker one beginning at 105, each one with a tail towards higher brightness temperatures of SMOS.

The first tail at 100 Kelvin can be explained by the gradual transition between land and water areas. As the SMOS land product

only distinguishes between fully covered land and water points, it does not represent partially covered measurements of pixels10

containing land and water. The region of higher TBs are located in the Baltic Sea. In that area, lower sea surface salinities and

higher water temperatures compared to the rest of the Arctic waters leads to higher brightness temperatures. The water bias

correction is used in all following simulations using the radiative transfer models.

Figure 2. Open water brightness temperature comparison between SMOS and MA2013. A water bias correction is applied to all simulated

brightness temperatures.

4 Brightness temperature comparison

Brightness temperatures simulated with MA2013 are generally higher than brightness temperatures of KA2010 up to around 1515

Kelvins (Fig. 3). Largest differences are located in the outer sea ice zones with highest magnitude where sea ice concentrations
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are close to 100%, and an increase of sea ice thickness is expected, such as in the East Siberian Sea or the Canadian Arctic

Archipelago in November. For a first evaluation of the brightness temperature models, the two extreme cases of open water

and 100% multi-year thick sea ice can be considered. Since we already treated the lower boundary of open ocean brightness

temperatures with a water bias correction as indicated above, we now concentrate on the upper boundary of a saturated signal

over thick sea ice areas. We find higher brightness temperatures in the central parts of the Arctic simulated by MA2013. The5

saturated value in MA2013 appears to be around ∼250 Kelvin whereas KA2010 only shows ∼240 Kelvins. The differences

between both models are lowest in the areas where multi-year sea ice is expected close to Greenland (NSDIC). There is no

indication for seasonal changes between brightness temperatures from November and March expect the increased area covered

by sea ice. The variability in November shows a slightly larger spatial variation of brightness temperature due to more new sea

ice formation.10

Brightness temperatures measured by SMOS appear to be in between the simulated ones of KA2010 and MA2013 influenced

by strong spatial differences (Fig. 4). In November 2012, both models show higher brightness temperatures in the East Siberian

Sea and the Canadian Arctic Archipelago. Lower brightness temperatures are located in the Canadian Basin and the Chukchi

Sea with extension to the Bering Street. A different picture is shown in the central Arctic at grid points with more than 80%

sea ice concentration coverage, where both models simulate brightness with deviations to opposite directions. The model15

of KA2010 shows lower (−2.84± 5.58K) and MA2013 higher (9.17± 5.69K) brightness temperatures compared to SMOS

observations. The same is true for March 2013, although that KA2010 (0.39±4.04K) shows a stronger agreement in the central

Arctic than MA2013 (10.78±4.31K). In November 2012, brightness temperature deviations between KA2010 and the SMOS

measurements are of smaller spatial extent than in MA2013 and show a higher variability between positive and negative

differences. MA2013 appears to be positively biased not only in November 2012, but also in March 2013. The simulations20

exceed SMOS brightness temperatures almost everywhere in the Arctic with deviations up to 20 Kelvins in the Labrador Sea

and Sea of Okhotsk. There are no large differences observed in open water areas, except places close to coastal areas that

confirms the quality of the water bias correction .

A general comparison between all simulated and modeled brightness temperatures in the Arctic show that most data points

are located in the open water region at around 105 Kelvins and more central areas at around 240 Kelvins (Fig. 5). The latter is25

associated with thicker sea ice related to saturated brightness temperatures at 1.4 GHz. In November, simulated brightness tem-

perature appear to correspond with SMOS measurements. KA2010 shows lower brightness temperatures of around 2 Kelvins

throughout the whole range, whereas MA2013 simulates larger brightness temperatures in thick ice regions. Furthermore, as

already seen in figure 4, MA2013 overestimates brightness temperatures above ∼190 Kelvins also in March. The individual

brightness temperature spread is biggest in between the main clusters (not shown here), although most points appear to con-30

centrate around the 1:1 line. The correlations of all distributions state r = 0.98 is astonishing, although the reason might be the

overwhelming majority of points located at the open water and saturated fix points.

Figure 6 shows the cumulative probability function over all simulated and observed brightness temperatures over sea ice in

the Arctic. In November approximately 40% of brightness temperatures are below 220 Kelvin, when it is only∼ 15% in March.

First, the brightness temperature distribution increases linearly until the aforementioned threshold and then quickly saturates35
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Figure 3. Monthly brightness temperatures simulated by KA2010 (left column) and MA2013 (center column). (a-c) shows the November

2012 brightness temperature distribution based on ORAP5 reanalyses input data with a comparison plot of both models at (c). (d-f) is equal,

but for March 2013.

around 240 Kelvins. A Kolmogorov-Smirnov-Test (α= 0.1) of the cumulative probability function over all data points of the

Arctic rejects all simulated brightness temperature distributions except for KA2010 in March 2013.

5 Radiative transfer model sensitivity study

In order to identify the most important input variables for the radiative transfer models, we evaluate the sensitivity of the

models to certain changes of sea ice, snow and sea water parameters. We keep all but one parameter fixed at a monthly value5

and calculate the brightness temperatures for the minimum and the maximum simulated value within the month for one physical

parameter. That will give us two different brightness temperatures, one for the minimum, one for the maximum, of which the
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Figure 4. SMOS brightness temperatures (a,d) compared with simulated brightness temperatures using KA2010 (b,e) and MA2013 (c,f) in

November 2012 (a-c) and March 2013 (d-f). The red dot in (a) indicates the position of the investigated grid cell in the Laptev Sea.

difference is the range of brightness temperature change related to one of the parameters that can be expected. Varying all

input parameters provided by the ORAP5 reanalyses we quantify the impact of certain physical parameters on our brightness

temperatures at a specific place over the time span of one month.

The most important input parameters for brightness temperature calculations with the radiative transfer models are the

sea ice fractional coverage, sea ice thickness and sea ice temperature (Fig. 7, accounting for 92% grid points in March and5

November). For both seasons, the sea ice temperature has the largest impact on the brightness temperatures in the central

Arctic with the largest spatial extent in MA2013. The sea ice temperature becomes even more important in March when the

overall sea ice extent is greatest throughout the year in up to 25% of the Arctic. Closer to the outer sea ice regions, the sea ice

fractional coverage is most influential for the largest part of the Arctic sea ice (around 60% of the total sea ice area). During
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Figure 5. Brightness temperature comparison between simulated and observed brightness temperatures in November 2012 (top) and March

2013 (bottom) for KA2010 (left) and MA2013(right). The pearson correlation r between simulated and observed brightness temperatures

over sea ice for MA2013 and KA2010, respectively is stated in the legend.

the sea ice growth season in November, the leading impact of sea ice fraction extends all the way to the coastal areas in the

East Siberian Sea, whereas the Canadian Basin is dominated by sea ice thickness growth. In any case, the sea ice thickness

is most important in a large area close to the sea ice edge (25% of the area in November). This is partially true when sea ice

thicknesses are predominantly thicker than half a meter and exceed SMOS sensitivity (5% in March). However, the effect of

sea ice concentration and thickness is similar in both models. In the very outer marginal sea ice zone it appears that sea surface5
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Figure 6. Cumulative probability density function of Arctic-wide brightness temperatures over sea ice in November 2012 (left) and March

2013 (right).

temperature dominates (7%). The sea surface salinity only contributes in very small areas in the Fram-Strait where sea surface

temperatures and salinities are higher (<1%).

For a more detailed analysis on the contribution of sea ice thickness and concentration to the modelled brightness temper-

atures, a sample freeze-up situation is investigated at a point located in the Laptev Sea (77.5◦N, 137.5◦E) from October to

November 2012 (Fig. 8). The observational sea ice concentration product ASI (ARTIST Sea Ice algorithm, (Kaleschke et al.,5

2001; Spreen et al., 2008) shows a rapid freeze-up to 80% sea ice coverage in just a few days. The brightness temperatures

of SMOS measurements and the KA2010 and MA2013 models properly agree with some exceptions on the first days of the

freezing period that starts around the 25. October. The simulated brightness temperatures appear to be underestimated at the

beginning of the season which leads to a more linear brightness temperature increase rather than a logarithmic shape as ob-

served from the SMOS measurements. However, the simulated sea ice concentration of ORAP5 appears to be lower than the10

the observed ASI sea ice concentration and needs almost two weeks to catch up to the same coverage as ASI. The sea ice thick-

ness on the other hand shows a fast thickening to more than half a meter even before the main freeze-up event takes place. The

sea ice growth model of Lebedev (1938) accumulates sea ice as a function of the temperature difference between the surface

air temperatures and freezing point of water, as well as the number of freezing days below zero degrees. In contrast to the sea

ice thickness of ORAP5, Lebedevs’ parameterization shows a gradual increase of ice thickness throughout the freeze-up event.15

Following, we observe an underestimation of sea ice concentration and an overestimation of sea ice thicknesses, although the

brightness temperatures between observational and simulated data fits decently well.
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Figure 7. Most influencial physical variables from ORAP5 on the brightness temperature gradient. Monthly values are shown for November

2012 (a-b) and March 2013 (c-d) for KA2010 (a-c) and MA2012 (b-d).
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Figure 8. Freeze-up event in October to November 2012 that took place in the Laptev Sea (77.5 N, 137.5 E). Brightness temperature time-

series of from KA2010, MA2013 and SMOS measurements (top) and sea ice thickness and concentration time-series of ORAP5, ASI and

Lebedev retrieval model data (bottom).

6 Discussion

The simulated brightness temperatures from two incoherent radiative transfer models with ORAP5 input data generally match

the SMOS observations in an overall Arctic-wide comparison. The analysis shows spatial differences throughout the Arctic

with largest differences in the outer Arctic regions for November 2012 and March 2013. However, the sign of the deviation

changes according to the region. In the East Siberian Sea both models simulate higher brightness temperatures compared5

with SMOS, whereas lower values are shown in the Canadian Basin. In the latter the fractional sea ice coverage increased

up to an average value of 60% in November, whereas the coverage in the East Siberian Sea kept more or less constant at

100% (not shown here). The Canadian Basin experienced an initial freeze-up from open ocean to a thin sea ice layer. As

microwave radiation in L-Band is most sensitive to changing sea ice with thicknesses of only a few centimeters (e.g. Kaleschke

et al. (2012)), sea ice concentration changes become more important the thicker the sea ice gets and brightness temperatures10

approach saturation. That makes it necessary to use a high-precision auxiliary sea ice concentration product to account for

brightness temperature changes due to alteration in sea ice concentration. As we provide sea ice fractional coverage from our

reanalyses to the radiative transfer models, we are able to reduce the uncertainty of sea ice fraction changes compared to studies
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with an assumption of a constant 100% sea ice concentration coverage (Tian-Kunze et al., 2014). However, changes still remain

essential. An uncertainty of 10% fractional sea ice coverage accounts for a difference of 15 Kelvins at sea ice thicknesses of

around 40 cm (Kaleschke et al., 2010). In the same scenario, a brightness temperature change of 15 Kelvins may stand for a

sea ice thickness uncertainty of more than 20 cm.

In order to assimilate thin sea ice thicknesses it is crucial to understand the impact of all physical parameters on the brightness5

temperature simulations. Kaleschke et al. (2012) found sea ice concentration and thickness changes in thin sea ice areas are the

most important variables for L-Band brightness temperatures. We here support this evidence as the dominating dependencies

for brightness temperature simulations are found to be the same throughout the Arctic (Fig. 7). Over thick sea ice in the central

Arctic we find the sea ice/snow surface temperature to be the most influential parameter. Since sea ice concentration is close

to 100% and sea ice thicknesses are above L-Band sensitivies, brightness temperature changes are due to the impact of snow10

and sea ice/snow temperature changes that comes with it. Our results also show a significant influence of sea ice/snow and

sea surface temperatures in areas of thin sea ice close to the ice edge. This is explained by a fractional sea ice coverage of

less than 10%, where brightness temperature variations are dominated by changing open water emissivities. We point out that

sea surface temperature and salinities get more important in regions with lower sea ice coverage. Therefore, in case partially

covered sea ice concentrations are taken into account we caution that a climatology of sea ice/snow surface temperatures or15

sea surface salinities might not be sufficient enough to picture the transition between open water towards the sea ice edge. This

is especially true for the declining sea ice observed in the recent years as the sea ice edge is likely to be located at a different

location than in the previous years.

Our results indicate that brightness temperature differences up to around 15 Kelvin can be due to the usage of different

radiative transfer models (Fig. 3). Even though both models tend to have the same signatures, KA2010 shows lower brightness20

temperatures than the MA2013 in the whole Arctic. This was expected as the MA2013 model is able to take multiple sea ice

layers into account, as well as the radiometric effect of snow on top of sea ice, whereas KA2010 only indirectly includes the

effect of snow with the representation of the thermodynamic insulation effect. Compared with SMOS brightness temperatures,

it appears that MA2013 overestimates brightness temperatures in many parts of the Arctic, most pronouncedly in March in the

central Arctic region. For a brightness temperature assimilation this would be rather detrimental, as we only expect benefits25

from SMOS-based ice thickness assimilation thin sea ice regions because microwave radiation is not able to distinguish between

thicker sea ice. In contrast, KA2010 shows good agreement in the central Arctic area. For brightness temperature assimilation

purposes that would be clearly beneficial as the main assimilation should take place in regions with thin sea ice rather than in the

central Arctic. Additionally, MA2013 shows a rapid brightness temperature rise in the transition from open water towards the

very first centimeters of sea ice (Kaleschke et al. (2010), Maaß et al. (2013)). Therefore, a more comprehensive representation30

of sea ice with radiative transfer equations using a multiple layers does not necessarily need to be an advantage for brightness

temperature assimilation.

The majority of all data points accumulates in the vicinity of the perfect fit, although in March, most of the data points are

located at brightness temperatures for either the saturated case at 240/250 Kelvin for KA2010/MA2013 or open water areas

(Fig. 5 and Fig. 6). The overall performance in terms of the range of simulated brightness temperatures over sea ice is explained35
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by the Kolmogorov-Smirnov test. The test accepts only the brightness temperature distribution from March 2013 of KA2010.

The reason is because 92% of all simulated data points are higher than 220 Kelvin. Therefore, it is most important for the

model to agree with the saturated case in order to determine reasonable areas for brightness temperature assimilation. Thus,

based on ORAP5 reanalyses input data and electromagnetic formulations used here, we suggest to use the KA2010 radiative

transfer model for brightness temperature assimilation. Note, that this is no statement about the quality of the radiation model5

in general, than rather a suggestion for the specific specification utilized in this study in terms of applied assumptions and

characteristics of the LIM2 sea ice model.

Although the statistical representation of brightness temperatures is well captured we find large discrepancies in times of

rapid sea ice changes (Fig. 8). ORAP5 appears to have difficulties to simulate freeze-up events by both, an overestimation

of sea ice thickness and an underestimation of sea ice concentration. The assimilation of OSI-SAF sea ice concentration into10

ORAP5 pushes the sea ice concentration into the right direction, but appears to be too slow to picture changes in a short

period of time. A smaller fractional sea ice concentration and an overestimation of sea ice thickness then leads to simulated

brightness temperatures that fit with observed SMOS brightness temperatures, even though both parameters are clearly wrong

at this time. In this case, a SMOS brightness temperature assimilation in ORAP5 may not bring much benefit as we cannot

distinguish between the influence of sea ice concentration and thickness. An auxiliary sea ice concentration data product is15

needed to correct brightness temperature calculations for possible differences in sea ice cover. We therefore suggest a combined

assimilation of brightness temperatures covering a broad spectral range from 1.4 to 37 GHz yielding information on both, sea

ice thickness and concentration.

All brightness temperature calculations rely on the quality of the ORAP5 data as the results are highly influenced by un-

certainties of the input parameters. A comprehensive sea ice concentration and sea ice thickness comparison between ORAP520

and observational products was made by Tietsche et al. (2015) who found an agreement of sea ice concentration in ORAP5

and OSTIA in the order of magnitude of 5% root mean square deviation. As aforementioned, this uncertainty accounts for 7-8

Kelvin, explaining up to more than 10 cm ice thickness difference in case of thicker sea ice and is therefore still critical. They

point out that thin sea ice regions need further improvements, especially in the vicinity of the ice edge. However, the initial

freeze-up sea ice thickness in the LIM2 sea ice model is set to 0.5 m leading to an overestimation of sea ice thicknesses in25

newly formed sea ice areas. Sea ice of half a meter thickness is already at the maximum thickness for a brightness temperature

assimilation and will lead to essential brightness temperature differences between modeled and observational data. This is a

strong argument for a brightness temperature assimilation, as it might help to correct the overestimation of ORAP5 sea ice

thicknesses in freeze-up areas.

7 Summary and outlook30

The radiative transfer models from Kaleschke et al. (2010) (denoted as KA2010) and Maaß et al. (2013) (MA2013) are taken as

a forward operator to simulate brightness temperatures at 1.4 GHz in the winter season 2012/2013 and to identify the feasibility

of the models for a brightness temperature assimilation in the global ocean reanalyses product ORAP5. Using ORAP5 input
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data, we compared modeled brightness temperatures with SMOS observations in November 2012 and March 2013 accounting

for the start and the end of the winter season, respectively.

The results of this study indicate that both models are able to simulate Arctic-wide monthly brightness temperatures. We are

able to observe a similar increase of simulated and observed brightness temperatures from thin to thicker sea ice areas. Although

both models show a decent fit in November, the model of Maaß et al. (2013) tends to overestimate brightness temperatures in5

the saturated case of thick sea ice in March with the configurations applied here. A Kolmogorov-Smirnov test thus only accepts

the brightness temperature distribution of KA2010 in March by taking the SMOS observation as the reference probability

distribution. All other, especially the results of MA2013 in March, are rejected. Therefore, we suggest to use the model of

KA2010 for a brightness temperature assimilation into the ORAP5 reanalyses project.

The most important parameters for the brightness temperature calculations over thin sea ice are identified to be the sea ice10

thickness and sea ice coverage. This result supports the findings of other studies (e.g. Kaleschke et al. (2012)). In thicker sea ice

areas the dominant parameter is the sea surface temperature since the sea ice fractional coverage is close to 100% and sea ice

thickness changes do not affect the measurements at 1.4 GHz. However, the smaller the sea ice fractional coverage, the more

important are the sea surface temperature and salinity. This becomes relevant at sea ice concentrations below 15%, usually in

small regions at the very outer sea ice edge.15

The brightness temperature assimilation is expected to result in more accurate sea ice thicknesses analysis than a direct

assimilation of the physical parameter as the climate model provides a series of input variables to the forward operator. These

variables do not need to be replaced by climatologies, parameterizations or assumptions that may inflict the results of our

sea ice thickness retrieval. However, even though the sea ice thickness and concentration in ORAP5 are well constrained by

observations (Tietsche et al., 2015), both show difficulties to represent a rapid freeze-up event with an underestimation of sea20

ice concentration and an overestimation of sea ice thickness. That reveals the challenge to use brightness temperatures to correct

for the right physical parameter and magnitude. We recommend to combine the brightness temperature assimilation for sea ice

thickness with the assimilation of an independent auxiliary observational sea ice concentration product or the simultaneous

assimilation of measurements taken at higher microwave frequencies, e.g. up to 37 GHz.

The assimilation of SMOS brightness temperatures appears to be a great chance for a better representation of sea ice thick-25

nesses in the ORAP5 reanalyses. Substantial differences between observational and simulated brightness temperatures are

found to be largest in regions with thin sea ice, in which SMOS uncertainties of the sea ice thickness retrievals are lowest

(Kaleschke et al., 2010). That reveals the possibility to retrieve and correct sea ice thicknesses in future investigations. How-

ever, to what magnitude these results translate to other reanalyses products or climate forecasts has to be investigated.

8 Data availability30

L3B Brightness temperatures are provided by the CliSAP-Integrated Climate Data Center (ICDC) on http://icdc.cen.uni-hamburg.

de/1/daten/cryosphere/l3b-smos-tb.html (Tian-Kunze et al., 2012). The reanalyses data of ORAP5 was kindly provided by
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the ECMWF and is freely available on http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&

view=details&product_id=GLOBAL_REANALYSIS_PHYS_001_017 (Zuo et al., 2015).
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